@ -0,0 +1,47 @@ |
|||||
|
.. image:: https://img.shields.io/badge/license-LGPL--3-green.svg |
||||
|
:target: https://www.gnu.org/licenses/lgpl-3.0-standalone.html |
||||
|
:alt: License: LGPL-3 |
||||
|
|
||||
|
Pos Face Recognition |
||||
|
==================== |
||||
|
This module helps you to login pos session by face recognition |
||||
|
|
||||
|
Configuration |
||||
|
============= |
||||
|
* No additional configurations needed |
||||
|
|
||||
|
Company |
||||
|
------- |
||||
|
* `Cybrosys Techno Solutions <https://cybrosys.com/>`__ |
||||
|
|
||||
|
License |
||||
|
------- |
||||
|
General Public License, Version 3 (LGPL v3). |
||||
|
(http://www.gnu.org/licenses/lgpl-3.0-standalone.html) |
||||
|
|
||||
|
Credits |
||||
|
------- |
||||
|
* Developers: (V18) Adarsh K, |
||||
|
(V17) Bhagyadev KP, |
||||
|
* Contact: odoo@cybrosys.com |
||||
|
|
||||
|
Contacts |
||||
|
-------- |
||||
|
* Mail Contact : odoo@cybrosys.com |
||||
|
* Website : https://cybrosys.com |
||||
|
|
||||
|
Bug Tracker |
||||
|
----------- |
||||
|
Bugs are tracked on GitHub Issues. In case of trouble, please check there if your issue has already been reported. |
||||
|
|
||||
|
Maintainer |
||||
|
========== |
||||
|
.. image:: https://cybrosys.com/images/logo.png |
||||
|
:target: https://cybrosys.com |
||||
|
|
||||
|
This module is maintained by Cybrosys Technologies. |
||||
|
For support and more information, please visit `Our Website <https://cybrosys.com/>`__ |
||||
|
|
||||
|
Further information |
||||
|
=================== |
||||
|
HTML Description: `<static/description/index.html>`__ |
@ -0,0 +1,22 @@ |
|||||
|
# -*- coding: utf-8 -*- |
||||
|
################################################################################ |
||||
|
# |
||||
|
# Cybrosys Technologies Pvt. Ltd. |
||||
|
# |
||||
|
# Copyright (C) 2025-TODAY Cybrosys Technologies(<https://www.cybrosys.com>) |
||||
|
# Author: Adarsh K (<https://www.cybrosys.com>) |
||||
|
# |
||||
|
# You can modify it under the terms of the GNU LESSER |
||||
|
# GENERAL PUBLIC LICENSE (LGPL v3), Version 3. |
||||
|
# |
||||
|
# This program is distributed in the hope that it will be useful, |
||||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
|
# GNU LESSER GENERAL PUBLIC LICENSE (LGPL v3) for more details. |
||||
|
# |
||||
|
# You should have received a copy of the GNU LESSER GENERAL PUBLIC LICENSE |
||||
|
# (LGPL v3) along with this program. |
||||
|
# If not, see <http://www.gnu.org/licenses/>. |
||||
|
# |
||||
|
################################################################################ |
||||
|
from . import models |
@ -0,0 +1,52 @@ |
|||||
|
# -*- coding: utf-8 -*- |
||||
|
################################################################################ |
||||
|
# |
||||
|
# Cybrosys Technologies Pvt. Ltd. |
||||
|
# |
||||
|
# Copyright (C) 2025-TODAY Cybrosys Technologies(<https://www.cybrosys.com>) |
||||
|
# Author: Adarsh K (<https://www.cybrosys.com>) |
||||
|
# |
||||
|
# You can modify it under the terms of the GNU LESSER |
||||
|
# GENERAL PUBLIC LICENSE (LGPL v3), Version 3. |
||||
|
# |
||||
|
# This program is distributed in the hope that it will be useful, |
||||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
|
# GNU LESSER GENERAL PUBLIC LICENSE (LGPL v3) for more details. |
||||
|
# |
||||
|
# You should have received a copy of the GNU LESSER GENERAL PUBLIC LICENSE |
||||
|
# (LGPL v3) along with this program. |
||||
|
# If not, see <http://www.gnu.org/licenses/>. |
||||
|
# |
||||
|
################################################################################ |
||||
|
{ |
||||
|
'name': 'Pos Face Recognition', |
||||
|
'version': '18.0.1.0.0', |
||||
|
'category': 'Point of Sales', |
||||
|
'summary': 'User can login pos session by face recognition method', |
||||
|
'description': 'User can login pos session by face recognition ' |
||||
|
'method.If any unauthorized login is detected a warning ' |
||||
|
'message is arise.', |
||||
|
'author': 'Cybrosys Techno Solutions', |
||||
|
'company': 'Cybrosys Techno Solutions', |
||||
|
'maintainer': 'Cybrosys Techno Solutions', |
||||
|
'website': 'https://www.cybrosys.com', |
||||
|
'depends': ['pos_hr'], |
||||
|
'assets': { |
||||
|
'point_of_sale._assets_pos': [ |
||||
|
'https://cdn.jsdelivr.net/npm/@vladmandic/face-api@1/dist/face-api.js', |
||||
|
'https://code.jquery.com/jquery-3.3.1.min.js', |
||||
|
'https://unpkg.com/webcam-easy/dist/webcam-easy.min.js', |
||||
|
'pos_face_recognition/static/src/js/SelectionPopup.js', |
||||
|
'pos_face_recognition/static/src/xml/SelectionPopup.xml' |
||||
|
] |
||||
|
}, |
||||
|
'data': [ |
||||
|
'views/hr_employee_view.xml' |
||||
|
], |
||||
|
'images': ['static/description/banner.png'], |
||||
|
'license': 'LGPL-3', |
||||
|
'installable': True, |
||||
|
'auto_install': False, |
||||
|
'application': False, |
||||
|
} |
@ -0,0 +1,6 @@ |
|||||
|
## Module <pos_face_recognition> |
||||
|
|
||||
|
#### 19.02.2025 |
||||
|
#### Version 18.0.1.0.0 |
||||
|
##### ADD |
||||
|
- Initial commit for Pos Face Recognition |
@ -0,0 +1,22 @@ |
|||||
|
# -*- coding: utf-8 -*- |
||||
|
################################################################################ |
||||
|
# |
||||
|
# Cybrosys Technologies Pvt. Ltd. |
||||
|
# |
||||
|
# Copyright (C) 2025-TODAY Cybrosys Technologies(<https://www.cybrosys.com>) |
||||
|
# Author: Adarsh K (<https://www.cybrosys.com>) |
||||
|
# |
||||
|
# You can modify it under the terms of the GNU LESSER |
||||
|
# GENERAL PUBLIC LICENSE (LGPL v3), Version 3. |
||||
|
# |
||||
|
# This program is distributed in the hope that it will be useful, |
||||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
|
# GNU LESSER GENERAL PUBLIC LICENSE (LGPL v3) for more details. |
||||
|
# |
||||
|
# You should have received a copy of the GNU LESSER GENERAL PUBLIC LICENSE |
||||
|
# (LGPL v3) along with this program. |
||||
|
# If not, see <http://www.gnu.org/licenses/>. |
||||
|
# |
||||
|
################################################################################ |
||||
|
from . import hr_employee |
@ -0,0 +1,35 @@ |
|||||
|
# -*- coding: utf-8 -*- |
||||
|
################################################################################ |
||||
|
# |
||||
|
# Cybrosys Technologies Pvt. Ltd. |
||||
|
# |
||||
|
# Copyright (C) 2025-TODAY Cybrosys Technologies(<https://www.cybrosys.com>) |
||||
|
# Author: Adarsh K (<https://www.cybrosys.com>) |
||||
|
# |
||||
|
# You can modify it under the terms of the GNU LESSER |
||||
|
# GENERAL PUBLIC LICENSE (LGPL v3), Version 3. |
||||
|
# |
||||
|
# This program is distributed in the hope that it will be useful, |
||||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
|
# GNU LESSER GENERAL PUBLIC LICENSE (LGPL v3) for more details. |
||||
|
# |
||||
|
# You should have received a copy of the GNU LESSER GENERAL PUBLIC LICENSE |
||||
|
# (LGPL v3) along with this program. |
||||
|
# If not, see <http://www.gnu.org/licenses/>. |
||||
|
# |
||||
|
################################################################################ |
||||
|
from odoo import api, fields, models |
||||
|
|
||||
|
|
||||
|
class HrEmployee(models.Model): |
||||
|
""" |
||||
|
Inheriting hr_employee model to add a image field |
||||
|
""" |
||||
|
_inherit = 'hr.employee' |
||||
|
|
||||
|
image = fields.Binary(string="Image", help="Add image for POS face login") |
||||
|
|
||||
|
@api.model |
||||
|
def _load_pos_data_fields(self, config_id): |
||||
|
return ['name', 'user_id', 'work_contact_id', 'image'] |
After Width: | Height: | Size: 2.2 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 628 KiB |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 210 KiB |
After Width: | Height: | Size: 209 KiB |
After Width: | Height: | Size: 109 KiB |
After Width: | Height: | Size: 495 B |
After Width: | Height: | Size: 1.0 KiB |
After Width: | Height: | Size: 624 B |
After Width: | Height: | Size: 136 KiB |
After Width: | Height: | Size: 214 KiB |
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 3.6 KiB |
After Width: | Height: | Size: 310 B |
After Width: | Height: | Size: 929 B |
After Width: | Height: | Size: 1.3 KiB |
After Width: | Height: | Size: 3.3 KiB |
After Width: | Height: | Size: 1.4 KiB |
After Width: | Height: | Size: 17 KiB |
After Width: | Height: | Size: 542 B |
After Width: | Height: | Size: 576 B |
After Width: | Height: | Size: 733 B |
After Width: | Height: | Size: 4.3 KiB |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 4.0 KiB |
After Width: | Height: | Size: 1.7 KiB |
After Width: | Height: | Size: 337 KiB |
After Width: | Height: | Size: 2.2 KiB |
After Width: | Height: | Size: 911 B |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 600 B |
After Width: | Height: | Size: 673 B |
After Width: | Height: | Size: 2.0 KiB |
After Width: | Height: | Size: 462 B |
After Width: | Height: | Size: 2.1 KiB |
After Width: | Height: | Size: 926 B |
After Width: | Height: | Size: 9.0 KiB |
After Width: | Height: | Size: 23 KiB |
After Width: | Height: | Size: 7.0 KiB |
After Width: | Height: | Size: 878 B |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 653 B |
After Width: | Height: | Size: 800 B |
After Width: | Height: | Size: 905 B |
After Width: | Height: | Size: 189 KiB |
After Width: | Height: | Size: 4.3 KiB |
After Width: | Height: | Size: 839 B |
After Width: | Height: | Size: 1.7 KiB |
After Width: | Height: | Size: 5.9 KiB |
After Width: | Height: | Size: 1.6 KiB |
After Width: | Height: | Size: 34 KiB |
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 3.8 KiB |
After Width: | Height: | Size: 23 KiB |
After Width: | Height: | Size: 1.9 KiB |
After Width: | Height: | Size: 2.3 KiB |
After Width: | Height: | Size: 427 B |
After Width: | Height: | Size: 627 B |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 988 B |
After Width: | Height: | Size: 3.7 KiB |
After Width: | Height: | Size: 5.0 KiB |
After Width: | Height: | Size: 875 B |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 767 KiB |
After Width: | Height: | Size: 138 KiB |
After Width: | Height: | Size: 760 KiB |
After Width: | Height: | Size: 92 KiB |
After Width: | Height: | Size: 697 KiB |
After Width: | Height: | Size: 1.1 MiB |
After Width: | Height: | Size: 97 KiB |
After Width: | Height: | Size: 43 KiB |
After Width: | Height: | Size: 89 KiB |
After Width: | Height: | Size: 28 KiB |
After Width: | Height: | Size: 287 KiB |
After Width: | Height: | Size: 269 KiB |
After Width: | Height: | Size: 149 KiB |
After Width: | Height: | Size: 272 KiB |
After Width: | Height: | Size: 212 KiB |
After Width: | Height: | Size: 880 KiB |
After Width: | Height: | Size: 87 KiB |
After Width: | Height: | Size: 11 KiB |
@ -0,0 +1,121 @@ |
|||||
|
//Loading faceapi weights
|
||||
|
const MODEL_URL = '/pos_face_recognition/static/src/js/weights'; |
||||
|
import { _t } from "@web/core/l10n/translation"; |
||||
|
import { SelectionPopup } from "@point_of_sale/app/utils/input_popups/selection_popup"; |
||||
|
import { usePos } from "@point_of_sale/app/store/pos_hook"; |
||||
|
import { patch } from "@web/core/utils/patch"; |
||||
|
import { useService } from "@web/core/utils/hooks"; |
||||
|
import { useRef, useState } from "@odoo/owl"; |
||||
|
import { AlertDialog } from "@web/core/confirmation_dialog/confirmation_dialog"; |
||||
|
faceapi.nets.ssdMobilenetv1.loadFromUri(MODEL_URL) |
||||
|
faceapi.nets.faceLandmark68Net.loadFromUri(MODEL_URL) |
||||
|
faceapi.nets.faceRecognitionNet.loadFromUri(MODEL_URL) |
||||
|
faceapi.nets.tinyFaceDetector.load(MODEL_URL), |
||||
|
faceapi.nets.faceLandmark68TinyNet.load(MODEL_URL), |
||||
|
faceapi.nets.faceExpressionNet.load(MODEL_URL), |
||||
|
faceapi.nets.ageGenderNet.load(MODEL_URL) |
||||
|
//Patching SelectionPopup component to add face login system
|
||||
|
patch(SelectionPopup.prototype, { |
||||
|
setup() { |
||||
|
|
||||
|
super.setup(...arguments); |
||||
|
this.pos = usePos(); |
||||
|
this.rootRef = useRef("root"); |
||||
|
this.rootEmp = useRef("rootEmp"); |
||||
|
this.dialog = useService("dialog"); |
||||
|
this.faceMatcher = null; |
||||
|
}, |
||||
|
// Function which will decide to open the web camera
|
||||
|
async selectItem(itemId) { |
||||
|
this.state.selectedId = itemId; |
||||
|
await this.loadImage(itemId) |
||||
|
if (this.have_image != false) { |
||||
|
await this.startWebcam() |
||||
|
} else { |
||||
|
this.dialog.add(AlertDialog, { |
||||
|
title: _t("Authentication failed"), |
||||
|
body: _t( |
||||
|
"Selected cashier have no image.." |
||||
|
), |
||||
|
}); |
||||
|
} |
||||
|
}, |
||||
|
|
||||
|
// Function which will load the cashier image
|
||||
|
async loadImage(itemId){ |
||||
|
const user = this.pos.models["hr.employee"].find( |
||||
|
(emp) => emp.id === itemId |
||||
|
); |
||||
|
this.have_image = user.image |
||||
|
const employee_image = this.rootEmp.el |
||||
|
if (this.have_image != false) { |
||||
|
employee_image.src = "data:image/jpeg;base64," + user.image |
||||
|
} |
||||
|
}, |
||||
|
|
||||
|
// Function to start the web camera
|
||||
|
startWebcam(){ |
||||
|
const video = document.getElementById('video') |
||||
|
navigator?.mediaDevices.getUserMedia( |
||||
|
{ video: true, audio: false } |
||||
|
).then((stream) => { |
||||
|
video.srcObject = stream |
||||
|
}).catch((error) => { |
||||
|
console.error(error) |
||||
|
}).then(this.faceRecognition(video)) |
||||
|
}, |
||||
|
|
||||
|
// Function to get the descriptions of cashier image
|
||||
|
async getLabeledFaceDescriptions(){ |
||||
|
const employee_image = this.rootEmp.el; |
||||
|
const detections = await faceapi |
||||
|
.detectSingleFace(employee_image) |
||||
|
.withFaceLandmarks() |
||||
|
.withFaceExpressions() |
||||
|
.withFaceDescriptor(); |
||||
|
return detections |
||||
|
}, |
||||
|
|
||||
|
// Function which compares the webcam image with cashier image
|
||||
|
async faceRecognition(video){ |
||||
|
const labeledFaceDescriptors = await this.getLabeledFaceDescriptions() |
||||
|
if (!this.faceMatcher) { |
||||
|
this.faceMatcher = new faceapi.FaceMatcher([labeledFaceDescriptors.descriptor]); |
||||
|
} |
||||
|
video.addEventListener('play', () => { |
||||
|
const canvas = faceapi.createCanvasFromMedia(video); |
||||
|
document.body.append(canvas); |
||||
|
const displaySize = {width: video.width, height: video.height} |
||||
|
faceapi.matchDimensions(canvas, displaySize) |
||||
|
setInterval(async () => { |
||||
|
const detections = await faceapi |
||||
|
.detectAllFaces(video) |
||||
|
.withFaceLandmarks() |
||||
|
.withFaceExpressions() |
||||
|
.withFaceDescriptors(); |
||||
|
detections.forEach((detection) => { |
||||
|
const match = this.faceMatcher.findBestMatch(detection.descriptor); |
||||
|
if (match._distance < 0.4 ) { // Adjust threshold as needed
|
||||
|
const modal = this.rootRef.el; |
||||
|
if (modal) { |
||||
|
modal.style.display = 'none'; |
||||
|
this.modalVisible = false; |
||||
|
this.confirm(); |
||||
|
video.srcObject.getTracks().forEach(track => track.stop()); |
||||
|
canvas.remove(); |
||||
|
} |
||||
|
} |
||||
|
else { |
||||
|
this.dialog.add(AlertDialog, { |
||||
|
title: _t("Authentication failed"), |
||||
|
body: _t( |
||||
|
"Face not recognized.." |
||||
|
), |
||||
|
}); |
||||
|
location.reload(); |
||||
|
} |
||||
|
}); |
||||
|
}, 100); |
||||
|
}) |
||||
|
}, |
||||
|
}) |
@ -0,0 +1,618 @@ |
|||||
|
[ |
||||
|
{ |
||||
|
"weights": [ |
||||
|
{ |
||||
|
"name": "entry_flow/conv_in/filters", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
3, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005431825039433498, |
||||
|
"min": -0.7441600304023892 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/conv_in/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/separable_conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005691980614381678, |
||||
|
"min": -0.6090419257388395 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/separable_conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.009089225881239947, |
||||
|
"min": -1.1179747833925135 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/separable_conv0/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/separable_conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00683894624897078, |
||||
|
"min": -0.8138346036275228 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/separable_conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011632566358528886, |
||||
|
"min": -1.3028474321552352 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/separable_conv1/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/expansion_conv/filters", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010254812240600587, |
||||
|
"min": -0.9229331016540528 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_0/expansion_conv/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/separable_conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0052509616403018725, |
||||
|
"min": -0.6406173201168285 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/separable_conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010788509424994973, |
||||
|
"min": -1.4564487723743214 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/separable_conv0/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/separable_conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00553213918910307, |
||||
|
"min": -0.7025816770160899 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/separable_conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.013602388606351965, |
||||
|
"min": -1.6186842441558837 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/separable_conv1/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/expansion_conv/filters", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.007571851038465313, |
||||
|
"min": -1.158493208885193 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "entry_flow/reduction_block_1/expansion_conv/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005766328409606335, |
||||
|
"min": -0.6688940955143349 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.012136116214826995, |
||||
|
"min": -1.5776951079275094 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv0/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004314773222979377, |
||||
|
"min": -0.5652352922102984 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.01107162026798024, |
||||
|
"min": -1.2400214700137868 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv1/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0036451735917259667, |
||||
|
"min": -0.4848080876995536 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.008791744942758598, |
||||
|
"min": -1.134135097615859 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_0/separable_conv2/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004915751896652521, |
||||
|
"min": -0.6095532351849126 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010868691463096469, |
||||
|
"min": -1.3368490499608656 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv0/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005010117269029804, |
||||
|
"min": -0.6012140722835765 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010311148213405235, |
||||
|
"min": -1.3816938605963016 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv1/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004911523706772748, |
||||
|
"min": -0.7367285560159123 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.008976466047997568, |
||||
|
"min": -1.2207993825276693 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "middle_flow/main_block_1/separable_conv2/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/separable_conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005074804436926748, |
||||
|
"min": -0.7104726211697447 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/separable_conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011453078307357489, |
||||
|
"min": -1.4545409450344011 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/separable_conv0/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/separable_conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.007741751390344957, |
||||
|
"min": -1.1380374543807086 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/separable_conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011347713189966538, |
||||
|
"min": -1.497898141075583 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/separable_conv1/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/expansion_conv/filters", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006717281014311547, |
||||
|
"min": -0.8329428457746318 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/reduction_block/expansion_conv/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/separable_conv/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0027201742518181892, |
||||
|
"min": -0.3237007359663645 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/separable_conv/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
512 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010076364348916447, |
||||
|
"min": -1.330080094056971 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "exit_flow/separable_conv/bias", |
||||
|
"shape": [ |
||||
|
512 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/age/weights", |
||||
|
"shape": [ |
||||
|
512, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.008674054987290326, |
||||
|
"min": -1.2664120281443876 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/age/bias", |
||||
|
"shape": [ |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/gender/weights", |
||||
|
"shape": [ |
||||
|
512, |
||||
|
2 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0029948226377075793, |
||||
|
"min": -0.34140978069866407 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/gender/bias", |
||||
|
"shape": [ |
||||
|
2 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
} |
||||
|
], |
||||
|
"paths": [ |
||||
|
"age_gender_model-shard1" |
||||
|
] |
||||
|
} |
||||
|
] |
@ -0,0 +1,606 @@ |
|||||
|
[ |
||||
|
{ |
||||
|
"weights": [ |
||||
|
{ |
||||
|
"name": "dense0/conv0/filters", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
3, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0057930146946626555, |
||||
|
"min": -0.7125408074435067 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv0/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006473719839956246, |
||||
|
"min": -0.6408982641556684 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010509579321917366, |
||||
|
"min": -1.408283629136927 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv1/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005666389652326995, |
||||
|
"min": -0.7252978754978554 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010316079270605948, |
||||
|
"min": -1.1760330368490781 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv2/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0063220320963392074, |
||||
|
"min": -0.853474333005793 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010322785377502442, |
||||
|
"min": -1.4658355236053466 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv3/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0042531527724920535, |
||||
|
"min": -0.5741756242864272 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010653339647779278, |
||||
|
"min": -1.1825207009035 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv0/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005166931012097527, |
||||
|
"min": -0.6355325144879957 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011478300188101974, |
||||
|
"min": -1.3888743227603388 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv1/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006144821410085641, |
||||
|
"min": -0.8479853545918185 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010541967317169788, |
||||
|
"min": -1.3809977185492421 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv2/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005769844849904378, |
||||
|
"min": -0.686611537138621 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010939095534530341, |
||||
|
"min": -1.2689350820055196 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv3/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0037769308277204924, |
||||
|
"min": -0.40790852939381317 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.01188667194516051, |
||||
|
"min": -1.4382873053644218 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv0/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006497045825509464, |
||||
|
"min": -0.8381189114907208 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011632198913424622, |
||||
|
"min": -1.3377028750438316 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv1/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005947182225246056, |
||||
|
"min": -0.7969224181829715 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011436844339557722, |
||||
|
"min": -1.4524792311238306 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv2/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006665432686899222, |
||||
|
"min": -0.8998334127313949 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.01283421422920975, |
||||
|
"min": -1.642779421338848 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv3/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004711699953266218, |
||||
|
"min": -0.6737730933170692 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010955964817720302, |
||||
|
"min": -1.3914075318504784 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv0/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00554193468654857, |
||||
|
"min": -0.7149095745647656 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.016790372250126858, |
||||
|
"min": -2.484975093018775 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv1/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006361540626077091, |
||||
|
"min": -0.8142772001378676 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.01777329678628959, |
||||
|
"min": -1.7062364914838006 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv2/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006900275922289082, |
||||
|
"min": -0.8625344902861353 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.015449936717164282, |
||||
|
"min": -1.9003422162112067 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv3/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/weights", |
||||
|
"shape": [ |
||||
|
256, |
||||
|
7 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004834276554631252, |
||||
|
"min": -0.7203072066400565 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/bias", |
||||
|
"shape": [ |
||||
|
7 |
||||
|
], |
||||
|
"dtype": "float32" |
||||
|
} |
||||
|
], |
||||
|
"paths": [ |
||||
|
"face_expression_model-shard1" |
||||
|
] |
||||
|
} |
||||
|
] |
@ -0,0 +1,691 @@ |
|||||
|
[ |
||||
|
{ |
||||
|
"weights": [ |
||||
|
{ |
||||
|
"name": "dense0/conv0/filters", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
3, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004853619781194949, |
||||
|
"min": -0.5872879935245888 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv0/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004396426443960153, |
||||
|
"min": -0.7298067896973853 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00635151559231328, |
||||
|
"min": -0.5589333721235686 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.009354315552057004, |
||||
|
"min": -1.2628325995276957 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv1/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0029380727048013726, |
||||
|
"min": -0.5846764682554731 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0049374802439820535, |
||||
|
"min": -0.6171850304977566 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.009941946758943446, |
||||
|
"min": -1.3421628124573652 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv2/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0030300481062309416, |
||||
|
"min": -0.5272283704841838 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005672684837790097, |
||||
|
"min": -0.7431217137505026 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010712201455060173, |
||||
|
"min": -1.5639814124387852 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense0/conv3/bias", |
||||
|
"shape": [ |
||||
|
32 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0030966934035806097, |
||||
|
"min": -0.3839899820439956 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
32, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0039155554537679636, |
||||
|
"min": -0.48161332081345953 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
32, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.01023082966898002, |
||||
|
"min": -1.094698774580862 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv0/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0027264176630506327, |
||||
|
"min": -0.3871513081531898 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004583378632863362, |
||||
|
"min": -0.5454220573107401 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00915846403907327, |
||||
|
"min": -1.117332612766939 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv1/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.003091680419211294, |
||||
|
"min": -0.5966943209077797 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.005407439727409214, |
||||
|
"min": -0.708374604290607 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00946493943532308, |
||||
|
"min": -1.2399070660273235 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv2/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004409168514550901, |
||||
|
"min": -0.9788354102303 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004478132958505668, |
||||
|
"min": -0.6493292789833219 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011063695888893277, |
||||
|
"min": -1.2501976354449402 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense1/conv3/bias", |
||||
|
"shape": [ |
||||
|
64 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.003909627596537272, |
||||
|
"min": -0.6646366914113363 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
64, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.003213915404151468, |
||||
|
"min": -0.3374611174359041 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
64, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010917326048308728, |
||||
|
"min": -1.4520043644250609 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv0/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.002800439152063108, |
||||
|
"min": -0.38085972468058266 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0050568851770139206, |
||||
|
"min": -0.6927932692509071 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.01074961213504567, |
||||
|
"min": -1.3222022926106174 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv1/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0030654204242369708, |
||||
|
"min": -0.5487102559384177 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00591809165244009, |
||||
|
"min": -0.917304206128214 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.01092823346455892, |
||||
|
"min": -1.366029183069865 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv2/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.002681120470458386, |
||||
|
"min": -0.36463238398234055 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0048311497650894465, |
||||
|
"min": -0.5797379718107336 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.011227761062921263, |
||||
|
"min": -1.4483811771168429 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense2/conv3/bias", |
||||
|
"shape": [ |
||||
|
128 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0034643323982463162, |
||||
|
"min": -0.3360402426298927 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv0/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
128, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.003394978887894574, |
||||
|
"min": -0.49227193874471326 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv0/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
128, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010051267287310432, |
||||
|
"min": -1.2765109454884247 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv0/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.003142924752889895, |
||||
|
"min": -0.4588670139219247 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv1/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00448304671867221, |
||||
|
"min": -0.5872791201460595 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv1/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.016063522357566685, |
||||
|
"min": -2.3613377865623026 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv1/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.00287135781026354, |
||||
|
"min": -0.47664539650374765 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv2/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006002906724518421, |
||||
|
"min": -0.7923836876364315 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv2/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.017087187019048954, |
||||
|
"min": -1.6061955797906016 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv2/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.003124481205846749, |
||||
|
"min": -0.46242321846531886 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv3/depthwise_filter", |
||||
|
"shape": [ |
||||
|
3, |
||||
|
3, |
||||
|
256, |
||||
|
1 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.006576311588287353, |
||||
|
"min": -1.0193282961845398 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv3/pointwise_filter", |
||||
|
"shape": [ |
||||
|
1, |
||||
|
1, |
||||
|
256, |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.015590153955945782, |
||||
|
"min": -1.99553970636106 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "dense3/conv3/bias", |
||||
|
"shape": [ |
||||
|
256 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.004453541601405424, |
||||
|
"min": -0.6546706154065973 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/weights", |
||||
|
"shape": [ |
||||
|
256, |
||||
|
136 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.010417488509533453, |
||||
|
"min": -1.500118345372817 |
||||
|
} |
||||
|
}, |
||||
|
{ |
||||
|
"name": "fc/bias", |
||||
|
"shape": [ |
||||
|
136 |
||||
|
], |
||||
|
"dtype": "float32", |
||||
|
"quantization": { |
||||
|
"dtype": "uint8", |
||||
|
"scale": 0.0025084222648658005, |
||||
|
"min": 0.07683877646923065 |
||||
|
} |
||||
|
} |
||||
|
], |
||||
|
"paths": [ |
||||
|
"face_landmark_68_model-shard1" |
||||
|
] |
||||
|
} |
||||
|
] |