# -*- coding: utf-8 -*- ############################################################################### # # Cybrosys Technologies Pvt. Ltd. # Copyright (C) 2023-TODAY Cybrosys Technologies() # Author: Fathima Mazlin AM (odoo@cybrosys.com) # # This program is free software: you can modify # it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE (LGPL) as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU LESSER GENERAL PUBLIC LICENSE for more details. # # You should have received a copy of the GNU LESSER GENERAL PUBLIC LICENSE # along with this program. If not, see . # ############################################################################### import base64 import cv2 import face_recognition from io import BytesIO import numpy as np from PIL import Image import time from odoo import api, models class HrEmployee(models.Model): _inherit = 'hr.employee' """For comparing image """ @api.model def camera_open(self, kwargs): """Capture the image from webcam and compare with already saved image""" cap = cv2.VideoCapture(0) # 0 is the index of the default camera image = self.env['hr.employee'].browse(kwargs["id"]).image_1920 binary_data = base64.b64decode(image) image_bytes = BytesIO(binary_data) pil_image = Image.open(image_bytes) np_image = np.array(pil_image) img_saved = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB) encode_image_saved = face_recognition.face_encodings(img_saved) face_recognized = 0 start_time = time.time() camera_time = 0 login_now = 0 while True: ret, frame = cap.read() # Read a frame from the camera cv2.imshow('frame', frame) # Display the frame imgs = cv2.resize(frame, (0, 0), None, 0.25, 0.25) imgs = cv2.cvtColor(imgs, cv2.COLOR_BGR2RGB) face_current_frame = face_recognition.face_locations(imgs) encode_current_frame = face_recognition.face_encodings( imgs, face_current_frame) for encodeFace, faceLoc in zip(encode_current_frame, face_current_frame): matches1 = face_recognition.compare_faces(encode_image_saved, encodeFace) face_distance = face_recognition.face_distance( encode_image_saved, encodeFace) match_index = np.argmin(face_distance) elapsed_time = time.time() - start_time if matches1[match_index]: face_recognized = 1 if elapsed_time > 6: login_now = 1 cap.release() break if login_now == 1: break if camera_time < 40 and login_now == 0: camera_time = camera_time + 1 else: cap.release() cv2.destroyAllWindows() break if cv2.waitKey(1) == ord('q'): break cap.release() # Release the camera cv2.destroyAllWindows() # Close all windows return face_recognized